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The Bankoff triplet circle The arbelos, the figure formed by three mutually
tangent semicircles with collinear centers and shown in Ficure 1, has fascinated
geometers since the time of the early Greeks. Also called the shoemaker’s knife
because it is shaped like that tool, it has been the subject of much study over the
centuries. Many amazing and counterintuitive properties have been discovered in this
figure, a few of which are described by Bankoff ([1] and [2]). That such a simple
figure should be so rich is perhaps not so surprising since the arbelos is, after all, a
triangle whose sides are semicircles.

Label the common diameter ACB and let the three semicircles be (O), (O,), and
(O,) as shown in Ficure 2. If one erects the common internal tangent line CD to the
two interior circles, then the circles (W) and (W,) inscribed in the resulting two
regions ACD and BCD are called the twin circles of Archimedes and have the same
radius. In 1974 Bankoff [1] pointed out that the twin circles of Archimedes are not
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FIGURE 1
The arbelos.

""This paper is dedicated to the memory of Leon Bankoff.
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FIGURE 2 FIGURE 3
The twin circles. The Bankoff triplet circle.
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twins, but two of triplets. That is, there is a third circle in the arbelos with the same
radius. Inscribe circle (O,) in the arbelos as shown in Ficure 3. Then the circle (W;)
that passes through point C and the points of tangency M and N of circle (O,) with
circles (O,) and (O,) has the same radius as the twin circles. It is the Bankoff triplet
circle. We denote certain circles congruent to the twin circles by (W,) for positive
integral n. Proofs of any of these assertions are postponed until after we note some
other family members.

One might think that. triplets are enough for any one household, but Bankoff
discovered yet another member of that famous family. Let EF be the common
external tangent to circles (O,) and (O,). The Bankoff quadruplet circle (W) is the
circle inscribed in the circular segment of semicircle (O) and the chord EF (ex-
tended). See Ficure 4. Furthermore, it is tangent to circle (O) at point D and is the
smallest circle through point D and tangent to line EF. Now draw radius OD to cut
EF at G. Then circle (W,) has diameter GD.

The Dodge circles Bankoff and I (Clayton Dodge) discussed his discoveries, which
led me to observe that if we drop a perpendicular CD’ from point C to line OD, then
D'D is twice the diameter of an Archimedean circle. Furthermore, the two circles
shown in Ficure 5 include (W,). We label the new circle, whose diameter is
D'G, (Wy).

Ficure 6 shows the translations of circles (W;) and (W,) that drop their centers
onto the common diameter AB as circles (W) and (W), and the circle (W) on their
centers as diameter. If these circles were merely translations, their interest would be
quite low, but I found other reasons for their consideration. The common external
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FIGURE 4 FIGURE 5
The Bankoff circle 4. Circles 4 and 5.
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FIGURE 6 FIGURE 7
Circles 6, 7, and 8. Circles 9, 10, and 11.

tangent to circles (O,) and (W), for example, passes through point B and that for
circles (O;) and (W) passes through O,. These properties will be examined more
closely in Ficure 25, near the end of this article.

Since segments CD and EF are equal and bisect each other at point L, there are
three circles (W), (W,,), and (W,;) symmetric to (W,), the smallest circle through D
and tangent to EF. We take (W) to be the smallest circle through E and tangent to
CD, (W) through F and tangent to CD, and (W) through C and tangent to EF.
See Ficure 7. Figures 5 and 7 show that circle (W,,) is also circle (W) translated
through vector D'C. Of course, circles (W) and (W) also translate down onto (W)
and (Wo).

When I gave a lecture on these first eleven circles to a student group a few years
ago, one of the students, Jonathan Dearing, pointed out circle (W,), the circle whose
diameter is the line of centers of circles (W,) and (W5), shown in Ficure 8. Little did
Archimedes realize the size of the family he uncovered! But we are not yet finished.

FIGURE 8
The Dearing circle 12.

Schoch’s circles The development takes another turn at this point. In 1979 Martin
Gardner wrote about Bankoff’s triplet circle, inspiring the then student Thomas
Schoch of Essen, Germany, to discover several more circles [4]. He sent his work, in
German, to Gardner, who forwarded it to Bankoff, who was not familiar with German.
Bankoff gave me a copy of it in 1996, when we were discussing the possibility of
writing this article. Historically, then, Schoch’s work precedes mine, but I shall
continue the circle numbering as started above. I recognized the high quality of
Schoch’s paper and set out to locate him. He, still living in Essen, had not pursued his
work on the circles until he found the arbelos website of Peter Woo [5] early in 1998.
He then contacted Woo and told him of his findings. Paul Yiu led me to Woo, who
had just completed a paper on his infinite family of Archimedean circles [6], and we
all decided to combine our separate efforts into this paper.
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Ficure 9 shows Schoch’s first two circles (W;) and (W,). They are found by
drawing the circles A(C), the circle with center A passing through point C, and
B(C) to cut circle (O) at points M; and M, respectively. Then (W,;) and (W,) are
the smallest circles through M, and M, and tangent to line CD. These circles, too,
translate down to (Wg) and (W,).
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FIGURE 9 FIGURE 10
Schoch’s circles 13 and 14. The Schoch circle 15.

Circle (Wy5) is the incircle of curvilinear triangle CM, M,. See Ficure 10. Next,
drop a perpendicular W3 K from point W5, the center of circle (W,;), to line AB.
Circle (Wyg) is the circle centered on that perpendicular and tangent externally to
circles (O,) and (O,), shown in Ficure 11.

Let the line KWi5 cut (O) at V. The smallest circle through V and tangent to the
circle on 0,0, as diameter, which we denote by (O,0,), is circle (W;;). Let VK cut
the circle (0,0,) at U. Then the circle through U, C, and K, denoted (UCK), that is,
the circle (UC), is circle (Wg). See Ficure 12.

FIGURE 11 FIGURE 12
The Schoch circle 16. Schoch’s circles 17 and 18.

If we construct on semicircle (O,) an arbelos AC,C similar to the given arbelos
ACB, then the semicircle on C,C as diameter is circle (Wg). Likewise we obtain circle
(W) by constructing another similar arbelos CC, B on CB as diameter. We let R,
R,, and R, be the highest points on circle (O,), and on the two circles (AC,) and
(C,C). Then R,R,C R, is a rectangle whose sides are in the ratio r, /r,. Similarly,
R,R;C, Ry and RR,CR, also are such rectangles, where Ry, R;, Rg, and R are the
highest points on circles (O,), (CC,), (Cy B), and (O). Furthermore, the lines C,R,,
C,R,, and R, Rj all concur at a point Z on line VK. See Ficure 13. In addition, since
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FIGURE 13
Circles 6 and 7 again.

the sides of these rectangles all make 45° angles with line AB, then points A, R,, R,
and R are collinear, as also are R;, R,, and C, and so forth. Paul Yiu [8] noted that
the center W, of the Bankoff triplet circle lies at the intersection of the lines R0,
and R,0,, thus providing an easy method for constructing that circle.

Locate point P on the circle on 0,0, as diameter so that a circle centered at P is
externally tangent to both circles (O,) and (O,). Circle (W) is the smallest circle
through point P and tangent to line AB. See Ficure 14.

S

FIGURE 14
The Schoch circle 19.

Refer to Ficure 15, where R;, Ry, and R are the highest points on circles (O,),
(O,), and (O) respectively. Then the circle (R") on R, R, as diameter passes through
O, C, and R. Let R,R, cut CD at Y and OR at Q. Then the circles (RQ) and (YC)
are circles (Wy,) and (W;). Circle (Wy,) is the circle symmetric to (W) in line R, R,
and is tangent to circle (O) at point I, which is also the intersection of the circle
(R, R,) and circle (O).

We note that points Z and K determine two more Archimedean circles, which we
shall call (Wy,) and (W), the circles Z(K) and K(Z), each centered on one of those
points and passing through the other. Although Schoch did not mention these circles,
he deserves the credit for them. Ficure 16 shows these latest circles. Schoch also
found the circles (W), (W,), (W), and (W},).
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FIGURE 15 FIGURE 16
Schoch’s circles 20 and 21. Circles 22 and 23.

Some loose ends In assembling proofs for all these circles, I observed three
additional Archimedean circles, (W,,), (W), and (Ws). Circles (W,,) and (W) are
centered at R, and Ry respectively and pass through points Wy and W, respectively.
They are shown in Ficure 17. Ficure 18 shows circle (W), the circle symmetric to

FIGURE 17 FIGURE 18
Circles 24 and 25. Circle 26.

circle (Wy,) in line R, R, and also symmetric to circle (W) in the center of circle
(OCIR). If CD cuts circle (R’) again at C’, then C’, Q, and I’ are collinear, as are
also O, Y, and I. Finally, Schoch found one other circle (W), the smallest circle
through point C and tangent to his circle (W;5), shown in Ficure 19.

FIGURE 19
The Schoch circle 27.

In November of 1996 Paul Yiu [7] wrote a letter to Bankoff stating that he had just
that morning discovered the circle I have called (W);), adding “Maybe you have
already known this. But isn’t it wonderful? He noted that its center is at the
intersection of O, F and O, E [8].
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Woo’s circles Peter Woo discovered an infinite family of Archimedean circles
centered on line KV shown in Ficures 11 and 12, which he called the Schoch line. In
Ficure 10 the Schoch circle (Wy5) is the incircle of the curvilinear triangle CM, M,.
The two circles A(C) and B(C), which pass through point C, whose centers lie on
AB, and whose radii are twice the radii of circles (O;) and (O,) respectively,
determine the arcs CM; and CM,. Woo generalized this idea by using any positive
multiple n instead of 2, leaving the circles to still pass through C, but moving their
centers along line AB. Thus, as shown in Ficure 20, draw two semicircles (O,) and

A O] CK O B
FIGURE 20 ‘
A typical Woo circle.

(0,"), each tangent to line CD at point C, with centers O, on ray CA and O,” on ray
CB, and with radii n times the radii of circles (O,) and (O,) respectively. Thus we
call n the radius multiplier. Then the circle (U,) with radius equal to that of the twin
circles and tangent to (O,) and (O,") will surprisingly have its center on the Schoch
line. Conversely, any circle (U,) with twin circle radius and centered sufficiently high
up on the Schoch line will be tangent to two such circles (O,) and (O,") for some
positive real number n. The Woo circles are a generalization of Schoch’s circles (W,5)
and (W4), also shown in Ficures 10 and 11. Ficure 24 shows selected Woo circles:
(U)) tangent to (O;) and (O,), (U,) = (W,5) tangent to A(C) and B(C), (U,), (U,),
and the limiting case (U,) = (W)).

Yiu’s second circle When Paul Yiu read Woo’s paper, he noted that circle (W) =
(U;) was tangent internally to circle (O) and observed that there has to be a Woo
circle (U,) that is tangent to (O) externally. He proved that this circle, which we
designate as (Wyg), touches (O) at point D [8]. See Ficure 27. He commented to me
that “Archimedean circles start escaping the shoemaker’s knife.”

The proofs We now present proofs of some of our assertions. Let the radii and
diameters of the circles (O), (0,), and (O,) be r and d, r; and d;, and r, and d,
respectively. Then, of course, r =r; +r, and d = d, + d,. Let us denote the radius of
each circle (W)) by p,. Although we shall not prove it, it is helpful in working with
circles (W5) and (W) and any of Woo’s circles to know that

riry(ry —7)

(ri+75)°

We shall need the fact that DD’ of Ficure 5 is equal to 2d,d,/(d, +d,), the
harmonic mean of the diameters of circles (O,) and (O,), so let us first display a
delightful figure that shows this fact, along with some other means and their well-
known relationship to one another. In the arbelos shown in Ficure 21, OR is that

radius of circle (O) that is perpendicular to the common diameter ACB. We use the
notation above and that given in [3] for the means.

CK =
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FIGURE 21

A mean figure.

THEOREM 1. In Ficure 21 we have that

(i) CR is the root-mean-square My(d,, d,) of AC and CB.
(i) OR = OD is their arithmetic mean M (d,, d,).
(i) CD is their geometric mean My(d,, d,).
(iv) DD', where D' is the foot of the perpendicular dropped from point C to OD, is
their harmonic mean M _,(d,, dy).

(v) Finally,
di=My>=M,>My=M_, >d,.

Furthermore, these inequalities are all strict when d, # d,.

Proof. Of course, AC=d,, CB=d,, and AB=d, so OD=0OR=d/2=
(dy+d,)/2=M, Now OC=O0B—CB=d/2—dy=(d —dy)/2 so by the
Pythagorean theorem we have

d d,\? d d, \?
cD = ‘/(—24?2) - (-2£— -2-) — Jdid, = M,
By similar right triangles, DD’ /CD = CD/OD and hence

_CD*  dyd, 2d,d,

pr= oD é(dl"'dz) ~dit+dy = Mo

In the desired inequality we see that each internal member is the hypotenuse of a
right triangle in which the next member is a leg. Thus triangle COR shows that
M, > M, triangle OCD shows that M, > M, and triangle CD’'D produces My > M _,.
Now '

d,=AC=A0+0C=RO+0OC=RC=M,
and
M_,=DD'=0D—-0D'=0B—-0D'>0B—-0C=CB=d,.
Equality occurs when and only when all three right triangles reduce to the same

straight line segment, that is, when point C coincides with point O, when d, =d,.
O

Although Theorems 2 and 3 are readily and cleverly proved by inversion, as Bankoff
showed in [1], our proof will be by high school geometry.
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THEOREM 2. The radii p, and p, of circles (W) and (W,) are equal to half the
harmonic mean of v, and ry. We denote this common value by p. That is,
S L S L
Pr=pPe=P= % +r, =+
Proof. Draw O W, and OW, and drop perpendiculars from W, to line CD and to
point Q on AB, as shown in Ficure 22. Then
OW,=r+p,, OW,=r—p,=nr +r,—py,
0,Q=r,—p, and OQ=r —1,—p,.

W)

/
/

/ {
A (0]

, 00 C 0, B
FIGURE 22
The twin circles.

From right triangles O,W,Q and OW,Q we get that

QW = (r, ‘*’Pl)2 —(n _P1)2 =(r +ry "Pl)g —(r =y _P1)27
which reduces to
S

4r,p, =4(r, —p,)r, and hence p, = o =p

A similar argument shows that p, = p. O
THEOREM 3. The radius p5 of circle (W5) is equal to p.

Proof. Let ry denote the radius of circle (O3), h the length of the perpendicular
O3H from O, to diameter ACB, and let x = OH. See Ficure 23. For convenience we

0,
FIGURE 23
Triplet circle proof.

let r=r +ry=1, so that p =r ry. Then, from the three right triangles OO H,
0,0,H, and O,0,H we obtain the three equations

22+ h2=(r +ry—ry)’, (rg+x)? +hE=(r +1,)°, and (r; —x)* +hP=(ry+1y)".
Subtract the first equation from each of the other two, obtaining

21"22 +2ryx = =211y +4rry + 2ry1,
and
o1 = 2rjx = —2r 1y + 21 1y + dryry.
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Now multiply the first of these two equations by r; and the second by r,, and then
add the resulting equations to get

2 2 2 2
driry +4r rg=4r"ry+4ry rq+4rryrs,

which we solve for rg, finding that

_ (r1+r2)r1'r2 _ Ny

T
3 2 2 1—rry”
r"F+ry triry 172

The sides of triangle 0,0,0; have lengths O,0,=r +ry,=1, 0,0, =1r3+1,
and 0,05 =r, + 1y, so its semiperimeter is 1 + r;. By Heron’s formula, its area K is

given by
K2=(1+ry)rryrs.
Since (W,) is the incircle for that triangle, we also have
K= (%)(rl +ry)pst (é)(’”s +r)pst (%)(7”2 +r3)ps=(1+13)ps.
Equating the two expressions for K2, we get that

(I+ry)rrery=(1+ 7"3)27732:

so that
2,9
rirs
p 2 NTely _ 1—rr = 2p2
3 1+, "ry T T1T2r
3 14+ —=—
1—=rry

Hence py=rry=p. It can be shown that h =2r;, an example of one of the
delightful theorems presented in [2]. O

Wo0’s THEOREM. For any positive number n, draw two semicircles (O,) and
(0,"), each tangent to line CD at point C, with centers O, on ray CA and O, on ray
CB, and with radii r\n and ryn respectively. Then the circle (U,) with radius equal to
that of the twin circles and externally tangent to (O,") and (O,") will have its center
on the Schoch line. Conversely, any circle U, with twin circle radius and centered on
the Schoch line above height 2r ry\/r\ry /(r)+1ry)* will be tangent to two such
circles (0,) and (O,") for some nonnegative real number radius multiplier n. See
Ficure 24.

Proof. Let C be the origin, ray CB the x-axis, and ray CD the y-axis. Choose the
unit of length so that r, +r, =1 and let the center of (U,) have coordinates (x, y).

FIGURE 24
Selected Woo circles.
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The radius of (U,) is half the harmonic mean of r; and r,, which is r,r, because
r, + 1y = 1. Then we have

0/U2—-0,"U?=(nr, +r11”9) — (nry +r1rz)2 = (nr +x)2 — (nry —x)2,
onryry(ry —ry) =2n(ry +ry)x,
and finally,
x=rry(ry —1y),

which proves that U, lies on the Schoch line. One can apply the Pythagorean theorem
to triangle CKW,; to establish the minimum height requirement, and the converse is
established. O

Some additional properties Now we cut short our proofs, having illustrated the
techniques by which all circles can be shown to have the same radius. We conclude by
stating a few more of the properties that these circles possess and locating one more
circle.

Let T, be the point of contact for circles (O,) and (W,) for i = 1,2. Then BD = BT,
and BT, is tangent to circles (O,) and (W,). Similarly, AD = AT, and AT, is tangent
to circles (O,) and (W,). See Ficure 25.

Earlier we stated that (W) and (W) were more than just translations of the twin
circles onto the common diameter AB. We have seen that they are such translations
also for (Wy) and (W), and for (W,;) and (W,,). Furthermore, as noted by Schoch
and seen in Ficure 13, they are semicircles of the inscribed similar arbelos. Also,
Ficure 26 shows that circle (Wy) is tangent to line AT,, and circle (Wy) is tangent to

FIGURE 25 FIGURE 26
Twin circle tangents. Tangents.

the line O, S, drawn from O, tangent to circle (O,). Similarly circle (W) is tangent
to line BT}, and circle (Wy) is tangent also to the line O, S, drawn from O, tangent to
circle (Oy). That is (Wy) is the circle through point C with center lying on segment
AC and tangent to the line AT, and (W,) is the circle through point C with center
lying on segment BC and tangent to the line BT,. Finally, (Wy) is the circle centered
at point C and tangent to the two lines O,S, and O,S,.

Our last circle is another Schoch circle. As shown in Ficure 27, circles (Wy), (W,,),
(W), and the second Yiu circle (W), that is, the Woo circle that is tangent externally
to circle (O) at point D, all have centers that lie on line OD. Schoch discovered circle
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FIGURE 27
Yiu’s circle 28 and Schoch’s circle 29.

(Wyg), the Archimedean circle centered at D, which has W,W,, as diameter.
Furthermore, the centers of all five of these circles project onto points on the base
diameter AB that are spaced distance CK apart from one another, as shown by the
dotted lines in the figure.

As a Woo circle (U,), the second Yiu circle (Wy) has the value for its radius
multiplier n given by

(r + ’"2)2
Ty '

n=2+

Conclusion Archimedes is credited with finding two delightful congruent circles in
the arbelos, and Leon Bankoff opened a door by finding his triplet circle and later the
quadruplet circle. Inspired by these masters, we have dramatically extended that
family of circles. Although we have not stated as theorems and proved every property
we indicated in our opening paragraphs, we have illustrated how to show that the
circles (W) through (W) and the infinite family of Woo circles are Archimedean
circles and do possess the claimed characteristics. We have achieved our goal of
demonstrating that the twin circles of Archimedes are only two members of a huge
family, in fact an infinite family, of congruent circles, all neatly hidden in that simple
arbelos. When next you have new heels put on your shoes, you might describe some
of these curious circles to your local cobbler.
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